Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(6): 2512-21, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25706445

RESUMO

The ability to organize functional molecules into higher dimensional arrays with well-defined spatial relationships between the components is one of the major goals in supramolecular chemistry. We report here a new route for the preparation of supramolecular boxes, incorporating two types of metal ions: (i) alkali-metal ions, which induce the supramolecular architecture and essentially play a structural role in the final compounds; (ii) manganese(III) ions, which are redox-active systems and give functionality to the new cages. Our results evidence that the size of the cavity inside the box can be tuned depending on the alkali metal used, a characteristic that gives this new family of compounds the potential to act selectively against different substrates. These compounds behave as active catalysts for disproportionation of H2O2 or for water photolysis, but they catalyze neither catecholase reaction nor peroxidase action upon using bulky organic substrates.

2.
Dalton Trans ; 41(35): 10832-44, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22858808

RESUMO

The coordinative chemistry of the tridentate half-salen ligand 5-(dimethylamino)-N-(2-((2-hydroxybenzylidene)amino)phenyl)naphthalene-1-sulfonamide (H(2)L, 1) has been studied by means of an electrochemical method. All of the complexes have been characterised using analytical and spectroscopic techniques. Ligand 1 and two nickel (6 and 7), copper (9), zinc (12) and cadmium (14) metal complexes have been studied by crystallography. Complexes 6 and 7 are octahedral and tetrahedral nickel(II) complexes, respectively, and both contain an [L](2-) molecule that behaves in an [N(2)O] tridentate manner. Nickel(II) completes its coordination kernel with three water molecules in complex 6, whereas in complex 7 the nickel ion is further bound to a molecule of dansylamine arising from a hydrolysis process. The copper(II) complex 9 is a monomeric compound that contains a bideprotonated ligand thread and a dimethylsulfoxide molecule coordinated through the sulfur atom. The zinc complex 12 is an unusual pentanuclear cluster compound whose structure consists of four anionic ligand units and two hydroxo anions bound to five zinc(II) centres. The appearance of the hydroxo anions in this complex provides new evidence for water reduction electrochemically promoted by zinc metal under mild conditions. The cadmium complex 14 is a dimeric compound that comprises two molecules of the anionic ligand and two dimethylsulfoxide molecules. The great structural variety exhibited by all these complexes demonstrates that the introduction of asymmetry in a salen skeleton by incorporating a dansyl pendant increases the versatility of the resulting ligand on coordination. All complexes are luminescent in solution at room temperature in acetonitrile solutions.

3.
J Inorg Biochem ; 105(12): 1538-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22071076

RESUMO

The peroxidase and catalase activities of eighteen manganese-Schiff base complexes have been studied. A correlation between the structure of the complexes and their catalytic activity is discussed on the basis of the variety of systems studied. Complexes 1-18 have the general formulae [MnL(n)(D)(2)](X)(H(2)O/CH(3)OH)(m), where L(n)=L(1)-L(13); D=H(2)O, CH(3)OH or Cl; m=0-2.5 and X=NO(3)(-), Cl(-), ClO(4)(-), CH(3)COO(-), C(2)H(5)COO(-) or C(5)H(11)COO(-). The dianionic tetradentate Schiff base ligands H(2)L(n) are the result of the condensation of different substituted (OMe-, OEt-, Br-, Cl-) hydroxybenzaldehyde with diverse diamines (1,2-diaminoethane for H(2)L(1)-H(2)L(2); 1,2-diamino-2-methylethane for H(2)L(3)-H(2)L(4); 1,2-diamino-2,2-dimethylethane for H(2)L(5); 1,2-diphenylenediamine for H(2)L(6)-H(2)L(7); 1,3-diaminopropane for H(2)L(8)-H(2)L(11); 1,3-diamino-2,2-dimethylpropane for H(2)L(12)-H(2)L(13)). The new Mn(III) complexes [MnL(1)(H(2)O)Cl](H(2)O)(2.5) (2), [MnL(2)(H(2)O)(2)](NO(3))(H(2)O) (4), [MnL(6)(H(2)O)(2)][MnL(6)(CH(3)OH)(H(2)O)](NO(3))(2)(CH(3)OH) (8), [MnL(6)(H(2)O)(OAc)](H(2)O) (9) and [MnL(7)(H(2)O)(2)](NO(3))(CH(3)OH)(2) (12) were isolated and characterised by elemental analysis, magnetic susceptibility and conductivity measurements, redox studies, ESI spectrometry and UV, IR, paramagnetic (1)H NMR, and EPR spectroscopies. X-ray crystallographic studies of these complexes and of the ligand H(2)L(6) are also reported. The crystal structures of the rest of the complexes have been previously published and herein we have only revised their study by those techniques still not reported (EPR and (1)H NMR for some of these compounds) and which help to establish their structures in solution. Complexes 1-12 behave as more efficient mimics of peroxidase or catalase in contrast with 13-18. The analysis between the catalytic activity and the structure of the compounds emphasises the significance of the existence of a vacant or a labile position in the coordination sphere of the catalyst.


Assuntos
Catalase/química , Complexos de Coordenação/química , Manganês/química , Peroxidase/química , Bases de Schiff/química , Catalase/síntese química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Eletroquímica , Iminas/química , Modelos Moleculares , Conformação Molecular , Peroxidase/síntese química , Bases de Schiff/síntese química , Relação Estrutura-Atividade
4.
Phys Chem Chem Phys ; 13(40): 18069-77, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21922086

RESUMO

Four manganese(III)-Schiff base complexes (1-4) of formula [MnL(n)(H(2)O)(2)](2)(ClO(4))(2)·mH(2)O (n = 1-4; m = 0, 1) have been prepared. The multidentate H(2)L(n) Schiff base ligands consist of 3R,5R-substituted N,N'-bis(salicylidene)-1,2-diimino-2,2-dimethylethane, where R = OEt, OMe, Br or Cl. The complexes have been thoroughly characterized by elemental analysis, mass spectrometry, magnetic susceptibility measurements, IR, UV, paramagnetic (1)H NMR and EPR spectroscopies. Other properties, including redox studies and molar conductivity measurements, have also been assessed. The crystal structure of 1 was solved by X-ray diffraction, which revealed the dimeric nature of the compound through µ-aqua bridges. The ability of these complexes to split water has been studied by water photolysis experiments, with the oxygen evolution measured in aqueous media in the presence of a hydrogen acceptor (p-benzoquinone), the reduction of which was followed by UV-spectroscopy. The discussion of the photolytic behaviour includes advances in the knowledge of the structural motifs and the chemical activity of this type of complex, as revealed by the development of several characterization techniques in the last decade. Parallel-mode Mn(III) EPR shows that complexes 1-4 not only mimic reactivity but also share some structural characteristics from partially assembled natural OEC clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...